
Exploratory Data Analysis (EDA) with Python
Exploratory Data Analysis (EDA) is a crucial step in understanding and analyzing datasets before applying advanced statistical techniques or building predictive models. In this tutorial, we’ll cover the basics of EDA, including statistical analysis, visualization techniques, and pattern identification, using Python.
EDA is the process of summarizing key characteristics of a dataset to gain insights into its underlying structure. It involves examining the distribution, relationships, and patterns within the data.
Steps of EDA:
Contents
Data Collection: Gather the dataset from relevant sources, ensuring it’s clean and properly formatted.
Data Cleaning: Handle missing values, outliers, and inconsistencies in the data.
Descriptive Statistics: Compute summary statistics (mean, median, standard deviation, etc.) to describe the central tendency and variability of the data.
Visualization: Create visual representations (histograms, scatter plots, box plots, etc.) to explore the data’s distribution and relationships.
Pattern Identification: Identify trends, anomalies, or interesting patterns in the data that may inform further analysis.
Statistical Analysis with Python
Using Pandas: Pandas is a powerful library for data manipulation and analysis in Python.
import pandas as pd
# Load dataset
df = pd.read_csv(‘dataset.csv’)
# Descriptive statistics
print(df.describe())
# Handle missing values
df.dropna(inplace=True)
Visualization Techniques with Matplotlib and Seaborn:
Matplotlib: Matplotlib is a versatile library for creating static, interactive, and animated visualizations in Python.
Seaborn: Seaborn is built on top of Matplotlib and provides a high-level interface for drawing attractive statistical graphics.
import matplotlib
.pyplot as plt
import seaborn as sns
# Histogram plt.hist(df['column'], bins=10)
plt.xlabel('X-axis label')
plt.ylabel('Y-axis label')
plt.title('Histogram')
plt.show()
# Scatter plot
sns.scatterplot(x='column1', y='column2', data=df)
plt.xlabel('X-axis label')
plt.ylabel('Y-axis label')
plt.title('Scatter Plot')
plt.show()
Pattern Identification:
Look for trends, seasonality, outliers, clusters, or any other notable patterns in the data.
#Box plot
sns.boxplot(x=’category_column’, y=’numeric_column’, data=df)
plt.xlabel(‘Category’)
plt.ylabel(‘Numeric Column’)
plt.title(‘Box Plot’)
plt.show()
Exploratory Data Analysis is a critical step in any data analysis workflow, providing valuable insights into the characteristics and patterns of the dataset. By leveraging Python libraries such as Pandas, Matplotlib, and Seaborn, data scientists can effectively perform EDA and make informed decisions about further analysis and modeling.
8 thoughts on “Exploratory Data Analysis (EDA) with Python”
어제 친구들과 회식 자리로강남가라오케추천다녀왔는데, 분위기도 좋고 시설도 깨끗해서 추천할 만했어요.
어제 친구들과 회식 자리로강남가라오케추천다녀왔는데, 분위기도 좋고 시설도 깨끗해서 추천할 만했어요.
어제 친구들과 회식 자리로강남가라오케추천다녀왔는데, 분위기도 좋고 시설도 깨끗해서 추천할 만했어요.
요즘 회식 장소 찾는 분들 많던데, 저는 지난주에강남가라오케추천코스로 엘리트 가라오케 다녀와봤습니다.
분위기 있는 술자리 찾을 땐 역시강남하퍼추천확인하고 예약하면 실패가 없더라고요.
회사 동료들이랑강남엘리트가라오케방문했는데, VIP룸 덕분에 프라이빗하게 즐길 수 있었어요.
신논현역 근처에서 찾다가강남룸살롱를 예약했는데, 접근성이 좋아서 만족했습니다.
술자리도 좋지만 요즘은강남셔츠룸가라오케이라고 불릴 만큼 서비스가 좋은 곳이 많더군요.